A method to geolocate eastern Baltic cod by using Data Storage Tags (DSTs)

Stefan Neuenfeldt, Hans-Harald Hinrichsen and Anders Nielsen

Email: stn@dfu.min.dk

TRACKS

WHY ESTIMATE INDIVIDUAL MIGRATION TRACKS?

- Timing of migrations
- Identify in situ behaviours
- Identify environmental control mechanisms
- Understand changes in population distribution on different temporal and spatial scales

Hydrography July 2003

Measurements

Hydrodynamic model

- Output: 3 D-distribution of T, S,O₂, sea level height and current velocities every 6 hours with a horizontal resolution of 5 km and 60 vertical levels (3 m intervals)
- Input: Meteorological forcing data (wind stress, air temperature, humidity, cloudiness etc.), river runoff, initialization by realistic hydrographic data (based on project related cruises)

Average horizontal gradients July 2003

Least squares technique

$$\sum (a(p_{cod} - p_{hyd}))^2 + (b(T_{cod} - T_{hyd}))^2 + (c(S_{cod} - S_{hyd}))^2 = \min$$

a, b, c – measurement error and parameter range dependent weighting factors

For $u_{travel} < \frac{1}{2}$ bodylength of fish per second

Remaining distance to the known re-capture location $< u_{travel}^* t_{remain}$

Kalman-Filtering

TIMING

BEHAVIOUR

ENVIRONMENTAL CONTROL

